Progress Towards $\Delta I = 1/2~K \to \pi\pi$ Decays with G-parity Boundary Conditions

Christopher Kelly Columbia University

Outline

- Motivation
- Challenges
- G-Parity Implementation
- G-Parity Contractions
- The Strange Quark
- Conclusions and Outlook

Motivation

$\mathbf{K} ightarrow \pi\pi$ Decays

- Direct CP-violation first observed in $K \to \pi\pi$ decays.
- Two types of decay:

$$\begin{array}{cccc} \Delta I = 3/2 & :K^+ & \rightarrow (\pi^+\pi^0)_{I=2} & \text{with amplitude } A_2 \\ \Delta I = 1/2 & :K^0 & \rightarrow (\pi^+\pi^-)_{I=0} \\ & K^0 & \rightarrow (\pi^0\pi^0)_{I=0} \end{array} \text{ with amplitude } A_0$$

- Direct CP-violation: $\epsilon' = \frac{i\omega e^{i(\delta_2-\delta_0)}}{\sqrt{2}} \left(\frac{\mathrm{Im}A_2}{\mathrm{Re}A_2} \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}\right)$ where
 - $\omega = \mathrm{Re}A_2/\mathrm{Re}A_0$ and δ_I are strong rescattering phase shifts.
- Strong interactions very important origin of the so-called $\Delta I=1/2$ rule: preference to decay to I=0 final state. Mechanism for this is not yet understood.

$\mathbf{K} \to \pi\pi$ Decays on the Lattice.

- Direct calculation of $K\to\pi\pi$ decays essential to understanding $\Delta I=1/2$ rule and in the search for BSM physics.
- Lattice computation of realistic decays has only recently become possible.
- RBC & UKQCD recently published (arXiv:1111.1699) calculation of $\Delta I=3/2$ decay using:
 - 2+1f domain wall fermions on a $32^3 \times 64 \times 32$ lattice with $a^{-1}=1.37(1)~{\rm GeV}.$
 - Near physical pions: $m_\pi^{PQ} \sim 140 \; {
 m MeV}, m_\pi^{
 m uni} \sim 170 \; {
 m MeV}$
 - Energy conserving decays
- Determined $\operatorname{Re} A_2$ and $\operatorname{Im} A_2$.

$\mathbf{K} \to \pi\pi$ Decays on the Lattice.

- Combining results of $\Delta I=3/2$ calculation with experimental value for ϵ'/ϵ , we obtained first value for ${\rm Im}A_0$
- Calculation of A_0 from first principles is much more difficult.

Challenges

Forming the $\pi\pi$ Propagator

• $\pi\pi$ state has vacuum quantum numbers, hence there are disconnected diagrams:

- Need large statistics and many source positions (or A2A/AMA propagators) to resolve.
- With Blue Gene/Q resources we can now perform such calculations with large enough physical volumes.

Physical Kinematics

- Best method is to use a stationary kaon and pions moving with equal momentum in opposite directions.
- This is an excited state of the $\pi\pi$ system normally require very large statistics for decent signal.
- Instead impose antiperiodic BCs on d-quark propagator. π^\pm gains momentum π/L , but for π^0 the p's cancel.
- This breaks isospin symmetry! However for $\Delta I=3/2$ we can use Wigner-Eckart theorem and isospin to relate $\Delta I_z=1/2~K^+\to\pi^+\pi^0$ to $\Delta I_z=3/2~K^+\to\pi^+\pi^+$.
- As $\pi^+\pi^+$ is only charge-2 final state (q-conservation still true), isospin breaking becomes unimportant as this state cannot mix with I=0 states.
- Note: In practise we needed APBC in 2 dirs for physical kinematics.

Physical Kinematics

- For $\Delta I = 1/2$ the Wigner-Eckart trick cannot be used.
- Isospin-breaking BCs would allow mixing between I=0 and I=2 final states. Separation would be difficult.
- Need to apply BCs that commute with isospin.
- Also, for $\Delta I=1/2$ the vacuum plays a role, so the BCs must be applied to both the valence and sea quarks.

G-Parity Boundary Conditions

 G-parity is a charge conjugation followed by a 180 degree isospin rotation about the y-axis:

$$\hat{G} = \hat{C}e^{i\pi\hat{I}_y} : \hat{G}|\pi^{\pm}\rangle = -|\pi^{\pm}\rangle$$

$$\hat{G}|\pi^0\rangle = -|\pi^0\rangle$$

• At the quark level:

$$\hat{G}\left(\begin{array}{c} u \\ d \end{array}\right) = \left(\begin{array}{c} -C\bar{d}^T \\ C\bar{u}^T \end{array}\right) \text{ where } C = \gamma^2\gamma^4 \,.$$

- G-parity commutes with isospin.
- Pions are all eigenstates with e-val -1, hence G-parity BCs make pion wavefunctions antiperiodic, with minimum momentum π/L .

G-Parity Implementation

Gauge Field Boundary Conditions

• d-field becomes $C\bar{u}^T$ across the boundary. Consider a bilinear on the boundary under a gauge transformation V :

$$\bar{d}(L-1)U_y(L-1)C\bar{u}^T(0)$$

$$\longrightarrow \bar{d}(L-1)V^{\dagger}(L-1)U_y(L-1)V^*(0)C\bar{u}^T(0).$$

Link must transform as

$$U_y(L-1) \to V(L-1)U_y(L-1)V^T(0)$$

- Link parallel to boundary on on other side $(y \ge L)$ must then transform as:
- $U_x(x,y,..) \to V^*(x,y,..)U_x(x,y,..)V^{T}(x+1,y,..)$
- Gauge fields therefore obey complex-conjugate BCs.

The Two-Flavor Method

 Two fermion fields on each site indexed by flavor index:

$$\psi^{(1)}(x) = d(x), \ \psi^{(2)}(x) = C\bar{u}^T(x)$$

BCs are:

$$\psi^{(1)}(x + L\hat{y}) = \psi^{(2)}(x),$$

$$\psi^{(2)}(x + L\hat{y}) = -\psi^{(1)}(x),$$

- Periodic BCs in other dirs.
- Single U-field shared by both flavors, with complex conj BCs.
- Dirac op for $\psi^{(2)}$ uses U_{μ}^{*} .

The One-Flavor Method

 Obtain equivalent formulation by unwrapping flavor indices onto two halves of doubled lattice:

- Antiperiodic boundary conditions in G-parity direction.
- U-field on first half and U^* -field on second half.

Choosing an Approach

- One flavor setup is much easier to implement.
- However recall that we needed APBC in 2 directions for physical kinematics in $\Delta I=3/2$ calculation.
- G-parity in >1 dir using one-flavor method requires doubling the lattice again, which is highly inefficient.

A second approach requires non-nearest neighbour

- Also inefficient depending on machine architecture.
- Choose to implement two-flavor method.

G-Parity Contractions

Unusual Contractions

 Flavor mixing at boundary allows contraction of up and down fields:

$$\psi_x^{(2)} \bar{\psi}_y^{(1)} = \mathcal{G}_{x,y}^{(2,1)} = C \bar{u}_x^T \bar{d}_y,
\psi_y^{(1)} \bar{\psi}_x^{(2)} = \mathcal{G}_{y,x}^{(1,2)} = -\bar{d}_y u_x^T C^T$$

Interpret as boundary creating/destroying flavor (violating baryon number):

- Also have γ^5 -hermiticity: $\left[\gamma^5 \mathcal{G}_{x,y}^{(2,1)} \gamma^5 \right]^\dagger = \mathcal{G}_{y,x}^{(1,2)}$

Pion Correlation Functions

• π^+ correlation function

$$\langle \bar{d}_x \gamma^5 u_x \bar{u}_y \gamma^5 d_y \rangle = \langle \bar{\psi}_x^{(1)} [\gamma^5 C] \bar{\psi}_x^{(2)} {}^T \psi_y^{(2)} {}^T [C \gamma^5] \psi_y^{(1)} \rangle$$

Now has two contractions:

$$\operatorname{tr}\left\{\mathcal{G}_{x,y}^{(1,1)\,T}C\gamma^{5}\mathcal{G}_{x,y}^{(2,2)}\gamma^{5}C\right\} + \operatorname{tr}\left\{\mathcal{G}_{x,y}^{(1,2)\,T}C\gamma^{5}\mathcal{G}_{x,y}^{(2,1)}\gamma^{5}C\right\}$$

arrows point from source to sink

Results: Pion Correlator

- Generated an $8^3 \times 32 \times 10^{\circ}$ DWF quenched ensemble.
- ~150 configs (20 MD tu's sep) with G-parity in 0,1,2,3 dirs.
- Coulomb-gauge fixed wall source propagators.

Results: Pion Dispersion Relation

• Deviations from continuum disp. reln. expected on lattice. e.g. free-field: $E^2 - m^2 = \sum \sin^2(p_i)$

The Strange Quark

Kaons

- $K \to \pi\pi$ calculation needs stationary K^0 .
- $\frac{1}{\sqrt{2}}(\bar{s}d+\bar{d}s)$ not a G-parity eigenstate.
- Need an eigenstate with e-val +1 for periodic BCs and hence $p_{\min}=0$.
- Introduce 'strange isospin' (I'): s-quark in doublet $\left(\begin{array}{c} s' \\ s \end{array}\right)$
- A neutral kaon-like state:

$$K'_0 = \frac{1}{2}(\bar{s}d + \bar{d}s + \bar{s}'u + \bar{u}s')$$

is an eigenstate of 'modified G-parity': $\hat{G}=\hat{C}e^{i\pi\hat{I}_y}e^{i\pi\hat{I}'_y}$ with e-val +1.

• Need factor of 2 in decay calc as only 1/2 of components of initial kaon couple to $\pi\pi$.

Locality

- Theory has one too many flavors. Must take square-root of s^\prime/s determinant in evolution to revert to 3 flavors.
- Determinant becomes non-local.
- Non-locality is however only a boundary effect that vanishes as $L \to \infty$. With sufficiently large volumes the effect should be minimal.

Charged Kaon Correlator

- K^+ analogue: $|K^{+}'\rangle = (\bar{u}\gamma^5 s \bar{s}'\gamma^5 d)|0\rangle$
- 2-point function has 4 contractions:

$$\operatorname{tr}\left\{\mathcal{G}_{x,y}^{(2,2)\,T}\gamma^{5}C\mathcal{G}_{x,y}^{(3,3)}\gamma^{5}C\right\} + \operatorname{tr}\left\{\mathcal{G}_{x,y}^{(4,4)\,T}\gamma^{5}C\mathcal{G}_{x,y}^{(1,1)}\gamma^{5}C\right\} - \operatorname{tr}\left\{\mathcal{G}_{x,y}^{(1,2)\,T}\gamma^{5}C\mathcal{G}_{x,y}^{(4,3)}\gamma^{5}C\right\} - \operatorname{tr}\left\{\mathcal{G}_{x,y}^{(3,4)\,T}\gamma^{5}C\mathcal{G}_{x,y}^{(2,1)}\gamma^{5}C\right\}$$

• If we make the masses of the (s',s) and (u,d) doublets the same this reduces to:

$$2\operatorname{tr}\left\{\mathcal{G}_{x,y}^{(1,1)\,T}C\gamma^{5}\mathcal{G}_{x,y}^{(2,2)}\gamma^{5}C\right\} - 2\operatorname{tr}\left\{\mathcal{G}_{x,y}^{(1,2)\,T}C\gamma^{5}\mathcal{G}_{x,y}^{(2,1)}\gamma^{5}C\right\}$$

- This is just twice the π^+ correlation function but with the opposite sign between the 2 contractions.
- Periodicity of spatial dependence appears to arise due to some cancellation between the two contractions.

Results: Degenerate K^{+}' Dispersion Relation

Conclusions and Outlook

Conclusions and Outlook

- G-parity boundary conditions look to be very promising for realising $\Delta I=1/2$ $K\to\pi\pi$ decays with physical kinematics.
- Direct calculation of A_0 is essential for understanding $\Delta I = 1/2$ rule and in the search for BSM physics.
- Coding two-flavor method is challenging but significant progress has been made.
- Aim to dedicate significant BlueGene/Q resources towards generating $32^3 \times 64 \times 32$ DWF lwasaki+DSDR ensembles with G-parity BCs and physical pions.